Design of Configurable Sequential Circuits in Quantum-dot Cellular Automata

نویسندگان

  • Mrinal Goswami
  • Mayukh Roy Chowdhury
  • Bibhash Sen
چکیده

Abstract Quantum-dot cellular automata (QCA) is a likely candidate for future low power nano-scale electronic devices. Sequential circuits in QCA attract more attention due to its numerous application in digital industry. On the other hand, configurable devices provide low device cost and efficient utilization of device area. Since the fundamental building block of any sequential logic circuit is flip flop, hence constructing configurable, multi-purpose QCA flip-flops are one of the prime importance of current research. This work proposes a design of configurable flip-flop (CFF) which is the first of its kind in QCA domain. The proposed flip-flop can be configured to D, T and JK flip-flop by configuring its control inputs. In addition, to make more efficient configurable flip-flop, a clock pulse generator (CPG) is designed which can trigger all types of edges (falling, rising and dual) of a clock. The same CFF design is used to realize an edge configurable (dual/rising/falling) flipflop with the help of CPG. The biggest advantage of using edge configurable (dual/rising/falling) flip-flop is that it can be used in 9 different ways using the same single circuit. All the proposed designs are verified using QCADesigner simulator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Test of New Robust QCA Sequential Circuits

   One of the several promising new technologies for computing at nano-scale is quantum-dot cellular automata (QCA). In this paper, new designs for different QCA sequential circuits are presented. Using an efficient QCA D flip-flop (DFF) architecture, a 5-bit counter, a novel single edge generator (SEG) and a divide-by-2 counter are implemented. Also, some types of oscillators, a new edge-t...

متن کامل

Design of low power random number generators for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA.  Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...

متن کامل

Novel Defect Terminolgy Beside Evaluation And Design Fault Tolerant Logic Gates In Quantum-Dot Cellular Automata

Quantum dot Cellular Automata (QCA) is one of the important nano-level technologies for implementation of both combinational and sequential systems. QCA have the potential to achieve low power dissipation and operate high speed at THZ frequencies. However large probability of occurrence fabrication defects in QCA, is a fundamental challenge to use this emerging technology. Because of these vari...

متن کامل

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

متن کامل

Design of low power random number generators for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA.  Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...

متن کامل

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.07616  شماره 

صفحات  -

تاریخ انتشار 2017